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Introduction. The most well-known aporphine de-
rivative, (R)-apomorphine [(R)-1], is a prototypic dopa-
minergic agonist.1 In contrast, (R)-aporphine [(R)-2]
itself is less potent as a dopamine (DA) receptor agonist
and displays predominantly serotonergic activity.2 Re-
cently, we described that introduction of a C11-phenyl
substituent in (R)-2, producing (R)-3, increases the
affinity for serotonin 5-HT1A receptors more than 40-
fold, thus leading to a potent 5-HT1A receptor ligand.3
On expanded profiling of (R)-3, we observed that it also
is a relatively potent 5-HT7 receptor4 ligand (Table 1).

No selective 5-HT7 receptor agonists and only a few
putatively selective antagonists, 4-7 (Table 1), have
been reported to date.5 The relatively high affinity of
(R)-3 for 5-HT7 receptors provided an opportunity to
derive potent and selective 5-HT7 receptor ligands by
structural modification of (R)-3. Therefore, we initiated
a synthetic program targeting analogues of (R)-3. Ini-
tially, we focused on variations of the substitution
pattern in the C11-phenyl ring. Herein, we describe the
introduction of substituents in the ortho positions of the
C11-phenyl group. The 2′-CN,6′-Me-substituted ana-
logue (6aR,aS)-14 is the most interesting of the novel
derivatives as it is a potent 5-HT7 receptor antagonist
which exhibits selectivity versus 5-HT1A and D2A recep-
tors. Furthermore, the stable atropisomers6 (6aR,aS)-

and (6aR,aR)-14 display pharmacological stereoselec-
tivity. This is one of the few instances in which stereo-
isomers with axial chirality have been demonstrated to
interact in a stereoselective fashion with G-protein-
coupled receptors.7

Chemistry. The key intermediate for the synthesis
of the atropisomeric aporphine derivatives, ditriflate (R)-
11, was prepared from the known triflate (R)-83 using

the three-step sequence shown in Scheme 1. A Suzuki
coupling reaction8 of (R)-8 and 2,6-dimethoxyphenylbo-
ronic acid gave (R)-9. Demethylation of (R)-9 gave
resorcinol (R)-10, which was treated with N-phenyltri-
fluoromethanesulfonimide to afford (R)-11.

Ditriflate (R)-11 contains diastereotopic triflate groups
(R and â, Scheme 2) and could therefore be utilized for
stereoselective palladium-catalyzed coupling reactions.
A cyano and a methyl substituent were stereoselectively
introduced into the C11-aryl substituent of (R)-11
yielding 90% and 60% de of (6aR,aR)-12 and (6aR,aR)-
13, respectively. In both reactions, 4-10% of the di-
coupled product was also formed. The stereoselectivity
obtained in these reactions is probably due to a pre-
ferred attack by a palladium species on the least
sterically hindered triflate group; triflate R is positioned
away from the aporphine skeleton, while triflate â is
situated above it (for comparison, see the solid-state
conformation of (6aR,aR)- and (6aR,aS)-14 in Figure 1).
Therefore, the conformation of (R)-11 makes triflate R
more accessible for attack by a palladium species. The
pure monotriflates (6aR,aR)-12 and (6aR,aR)-13 were
then converted into the atropisomeric (6aR,aS)- and
(6aR,aR)-14 by palladium-catalyzed methylation and
cyanation, respectively. For these second coupling reac-
tions stronger conditions were required. For example,
introduction of the methyl group in (6aR,aR)-12 re-
quired the more reactive and less sterically hindered
tetramethylstannane instead of tributylmethylstannane
and also a longer reaction time (5 h), compared with
the methylation of (R)-11 (40 min) vide supra. For the
introduction of the cyano group in (6aR,aR)-14 micro-
wave heating was utilized in order to shorten the
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reaction time.9 Hydrolysis of the triflate group in
(6aR,aR)-13 gave phenol (6aR,aR)-15. The isomeric
phenol (6aR,aS)-15 was obtained by hydrolysis of a
mixture of (6aR,aS)- and (6aR,aR)-13 (8:2)10 followed
by separation of the isomers.

The solid-state conformation and the relative axial
stereochemistry of each of the atropisomers (6aR,aR)-
and (6aR,aS)-14 were established by single-crystal X-ray
diffraction techniques.11 Thermal ellipsoid plots of the
solid-state conformations are shown in Figure 1. The
torsion angle τ1[C11a-C11-C1′-C2′] is -68.0(6)° and
119.6(5)° in (6aR,aR)- and (6aR,aS)-14, respectively,
giving conclusive evidence for the relative axial config-
uration aR in (6aR,aR)-14 and aS in (6aR,aS)-14. The
relative stereochemistry of the other two atropisomers
was unambiguously assigned by chemical correlation
with the two epimers above.12 The solid-state conforma-
tions of the two epimers are very similar and a best fit
of all C and N atoms gave a root-mean-square (rms)
value of 0.11 Å, the main deviation being observed in
the C11-aryl group. We have previously shown that the
torsion angle between the aromatic A- and C-rings, τ2-
[C11-C11a-C11b-C1], in a calculated idealized (R)-
aporphine skeleton is approximately -24°.5d In (6aR,aR)-
and (6aR,aS)-14, however, τ2 is -28.7(7)° and -30.2(7)°,
respectively. This widened angle probably results from

the proximity in space of the C11-substituent and the
(R)-aporphine skeleton.13

Since the presence of atropisomerism in the com-
pounds described here is due to hindered rotation about
the C11-C1′ bond, the stability14 of two isomers toward
isomerization was determined: although the neutral
(6aR,aS)- and (6aR,aR)-14 were left in H2O (pH 7.4) at
100 °C and the corresponding hydrochloride salts were
dissolved in DMSO and kept at 150 °C for 24 h, no
isomerization was detected by HPLC, demonstrating
that these atropisomers are stable toward isomerization
at temperatures <100 °C for at least 24 h.

Biological Results and Discussion. The receptor
affinities of the novel derivatives were evaluated in vitro
at 5-HT7, 5-HT1A, and D2A receptors, essentially as
described before.5d,15 Compounds (R)-1-7 are included
for comparative purposes. The efficacy of the atropiso-
mers, (R)-3, (R)-9, and (R)-10 at 5-HT7 receptors was
studied in CHO cells expressing rat 5-HT7 receptors by
measuring the cAMP formation with and/or without
pretreatment with the endogenous ligand 5-HT. In this
assay, the ability of a compound to fully or partially
reverse the 5-HT-stimulated production of cAMP is a
measurement of antagonism or partial agonism. The
results are presented in Table 1.

The present and previous3 results indicate that a C11-
phenyl group is beneficial for the interaction of (R)-
aporphines with both the 5-HT1A and the 5-HT7 receptor
subtypes. The profile of these derivatives may, however,
be modified by the introduction of symmetrically di-
ortho-substituted C11-phenyl groups such as in (R)-9
[(OMe)2], (R)-10 [(OH)2], and (R)-11 [(OTf)2]. The affini-
ties of these derivatives for D2A, 5-HT1A, and 5-HT7
receptors were decreased with the largest decrease
observed at 5-HT1A receptors. This resulted in com-
pounds with selectivity for the 5-HT7 receptor, the
dimethoxy derivative (R)-9 being the most selective and
also the most potent analogue. It displays a 42- and 156-
fold selectivity for 5-HT7 receptors versus 5-HT1A and
D2A receptors, respectively. Also the introduction of
unsymmetrical diortho-substituted phenyl groups gives
compounds with selectivity for the 5-HT7 receptor. Only
one derivative, (6aR,aS)-15, showed moderate affinity
for 5-HT1A receptors while the other atropisomers were
weaker. The atropisomer (6aR,aS)-14, substituted with
a cyano and a methyl group, is the most potent and
selective atropisomer displaying a Ki value of 3.79 nM
at the 5-HT7 receptors and 37- and 131-fold selectivity
for 5-HT7 versus 5-HT1A and D2A receptors, respectively.
The atropisomeric (6aR,aR)-14 showed the same selec-
tivity for 5-HT7 receptors as (6aR,aS)-14 but was about
5 times less potent. This indicates that both a methyl
and a cyano group are tolerated by the 5-HT7 receptor
although the receptor-ligand interaction appears more
optimal for (6aR,aS)-14 than for (6aR,aR)-14. Atropi-
somers (6aR,aR)- and (6aR,aS)-15, being substituted
with a methyl and a hydroxy group, are less selective
and/or less potent at 5-HT7 receptors as compared to
(6aR,aS)- and (6aR,aR)-14.

The high affinity and the preference for 5-HT7 recep-
tors of the novel derivatives are of interest since only a
few antagonists (4-7) with putative selectivity for 5-HT7
have been reported.5 Therefore, we decided to further
characterize the pharmacology of the novel compounds;

Scheme 1a

a Reagents: (a) (Ph3P)4Pd, 2,6-(OMe)2PhB(OH)2, K2CO3, DMF;
(b) aq HBr (48%); (c) K2CO3, Et3N, (CF3SO2)2NPh, CH2Cl2.

Scheme 2a

a Reagents: (a) (Ph3P)4Pd, Zn(CN)2, DMF; (b) Pd(OAc)2, dppf,
LiCl, Me4Sn, DMF; (c) Pd(OAc)2, dppf, CoCl3, MeSnBu3, DMF; (d)
separation of isomers; (e) K2CO3, EtOH, H2O; (f) (dba)3Pd2, dppf,
Zn(CN)2, DMF.
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the four atropisomers and (R)-3, (R)-9, and (R)-10 were
tested in a functional assay in order to determine their
efficacy at 5-HT7 receptors. None of the analogues were
able to stimulate the cAMP production in CHO cells
transfected with rat 5-HT7 receptors, and thus, none of
the tested compounds appear to be able to stimulate
5-HT7 receptors. The atropisomers and (R)-3 dose-
dependently inhibited the 5-HT-stimulated cAMP pro-
duction and therefore behaved as 5-HT7 receptor antag-
onists. In agreement with results from the binding
studies, (6aR,aS)-14 was the most potent antagonist.

The pharmacological profiles of these novel derivatives
make them interesting as structural leads for future
medicinal chemistry efforts aiming at highly selective
5-HT7 receptor ligands. Preliminary results of (R)-11-
(2,6-dimethylphenyl)aporphine and (R)-11-(2,6-dicyano-
phenyl)aporphine indicate that also these derivatives
display potency and/or selectivity for 5-HT7 receptors.16

In conclusion, we have prepared stable atropisomeric
biaryl derivatives of (R)-aporphine. These structurally
well-characterized derivatives interact in a stereoselec-
tive fashion with 5-HT7, 5-HT1A, and D2A receptors.

Figure 1. Perspective view (ORTEP) of the solid-state molecules of (6aR,aR)-14‚HCl (left) and (6aR,aS)-14‚HCl (right).
Displacement ellipsoids are represented at the 40% probability level.

Table 1. Effects of the Novel Derivatives on 5-HT7-Mediated Stimulation of cAMP Production in CHO Cells Expressing Rat 5-HT7
Receptors and In Vitro Binding Affinities to 5-HT7, 5-HT1A and D2A Receptors Labeled by [3H]5-HT, [3H]8-OH-DPAT, and
[3H]Raclopride

cAMP production

Ki (nM)a

% stimulation
% inhib of 5-HT-

induced stimulation

compd R R′ concn (nM) %b concn (nM) %b
[3H]5-HT
(5-HT7)

[3H]8-OH-DPAT
(5-HT1A)

[3H]Raclopride
(D2A)

(R)-1 NTc NT 188 ( 17d 296 ( 1e,f 41.9 ( 4.7f

(R)-2 NT NT 88.0 ( 3.7d 80.0 ( 2.3e,f 527 ( 296f

(R)-9 OMe OMe g NAh NT 13.0 ( 0.15 554 ( 58 2030 ( 345
(R)-10 OH OH g NA NT 36.2 ( 12 139 ( 3.2 >1000
(R)-11 OTf OTf NT NT 708 ( 282 >10000 2260 ( 660
(R)-3 H H i NA 1 23 ( 5 9.78 ( 0.82 1.8 ( 0.4e,f 233 ( 3f

100 30 ( 4
10000 100

(6aR,aR)-14 Me CN i NA 1 21 ( 0 20.8 ( 2.1 778 ( 105 2470 ( 220
100 42 ( 1

10000 100
(6aR,aS)-14 CN Me i NA 1 33 ( 3 3.79 ( 0.99 142 ( 24 498 ( 98

100 97 ( 3
10000 100

(6aR,aR)-15 Me OH i NA 1 21 ( 5 43.1 ( 10 319 ( 54 3380 ( 300
100 43 ( 5

10000 100
(6aR,aS)-15 OH Me i NA 1 11 ( 1 23.0 ( 3.4 48.8 ( 8.4 2500 ( 390

100 72 ( 0
10000 100

4j 31.6 >7943 3981
5k 3.31 170 105
6l 1.26 >10000 316
7m 18.0 ( 1.2 355 ( 32 2250 ( 550

a The Ki values are means ( standard errors of 2-4 experiments. bAll values are given as percent of the stimulation produced by 100
nM 5-HT. The EC50 value for 5-HT is 4.1 ( 0.7 nM. The stimulation produced by 5-HT at 100 nM is 95 ( 5% of that at 1 µM. cNT ) not
tested. dFrom ref 5d. eData obtained from competition experiments with rat brain 5-HT1A receptor recognition sites. fFrom ref 3. gThe
concentrations tested were 10, 100, and 1000 nM. hNA ) no activity. iThe concentrations tested were 1, 10, 100, 1000, and 10000 nM.
jFrom ref 5a. kFrom ref 5b. lFrom ref 5c. mFrom ref 5d.
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The novel derivatives show a preference for the 5-HT7
receptor subtype and have been characterized as 5-HT7
receptor antagonists. (6aR,aS)-14 is a particularly selec-
tive and potent 5-HT7 receptor antagonist. This will
make it useful as a pharmacological tool in 5-HT
research.
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